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INTRODUCTION TO THE LASER-HANE EXPERIMENT AND
SUMMARY OF LOW-PRESSURE INTERACTION RESULTS

I. Introduction

DNA‘s Division of Atmospheric Effects (RAAE), initiated a laser-target
HANE-simulation experiment at the Naval Research Laboratory in early 1982, The
objective of this experiment is to study the mechanisms involved in a HANE
event, especially those which affect the early-time evolution of the plasma
structure.(l) The experiments have two goals. The first objective 1is <o
emulate a nuclear event as closely as possible. Laboratorv parameters which
cannot directly duplicate those of a real or hypothetical HANE, such as masses
and distances, nave to be scaled using an appropriate scaling argument. The
second goal 1is to study relevant physical effects or mechanisms, even 1if the
experimental parameters are quite far from that of s direct simulation. In
2ither case coupling to the theoretical activily 1ia the HANE-community is
desirable to achieve a better understanding of the consequences of a HANE-like
event and its relationship to the laboratory findings.

The experiment to date has focused on three regimes of interest. These

are:

o Collisionless Coupling Regime (low ambient pressure).
o Collision Dominated Regime (high ambient pressure).

o] Disassembly Regime (high debris density, high debris acceleration).

The collisionless coupling (or low-pressure) regime is used to address the
mechanisms involved in the debris-air coupling at high-altitudes (such as in
Starfish), where collisionless or Longmire coupling is operative; a review of
our experiments in this regime forms the major portion of this and the next

(2)

paper.

Manuscript approved November 29, 1983,




When ambient gas pressure is above a few-tenths of torr (high-pressure),
the experiment exhibits collisional characteristics that correspond to HANE
conditions in the 100 to 200 km altitude range (such as Checkmate). Cur first
experiments in this regime is the subject of several other papers in this
proceedings.(3’4’5)

Finally, the disassembly regime 1s concerned with the nonuniformities that
may result during the detonation stage when the weapon material 1is highly
acceiarated outward by the released energy; a primary question is whether these
nonuniformities grow due to Rayleigh-Taylor instability(B) and evolve into

(7)

later~-time structura.® Experiments addressing this subject are the subiect of

(3)

another paper in this proceedings.

_I. Zxperiment and Diagnostics

I will now outline the configuration of the present experiment and the
sarameter regimes that are accessible. Enhancements to the laser and target
facility presently being made will also be briefly described.

The experiment involves focusing beams from the NRL-Pharos II Nd-laser
(1.05 uym wavelength) onto a small (< 1 mm dia, few-microns thick foil) solid
target in the center of the target chamber. Target material is ablated by the
laser irradiation and streams radically outward with %inetic energy densities
comparable to those resulting from a weapon detonation. A low-density
background gas in the chamber is promptly ionized near the target by radiation
from the laser-target interaction (photoionization), and at later times by the
expanding debris (UV photoionization from the debris shell or by particle
impact). This creates an ambient plasma, through which the high-velocity
nuclear~-like debris streams, emulating the ilonospheric conditions surrounding a

detonation; an external magnetic fleld can be applied over the whole interaction
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region, using permanent magnets or coils, to mock-up the ionospheric magnetic
field. As we will see, with appropriate scaling the spatial dimensions of the
relevant interaction region is of the order of centimeters, the time-scales
involved are fractions of a microsecond, the magnetic fields are close to
kilogauss and the required ambient gas pressure is below ten Torr (1 Torr = 1 mm
of Hg = 3.24 x 1016 molec/cc). The laser~pulse energy requirement to simulate a
detonation 1is also reasonable, being 10 to 1000 Joules. Figure 1 shows the
experimental arrangement schematically. Some of the present and (to be)
upgraded facility specifications are tabulated in Table I. The facility
upgrade, which includes extensive modifications to both the laser and the target

areas, 1s expected to be completed in late FY~84 or early FY-85.

Table I. Facility Specifications

LASER CHAMBER/GAS MAGNETIC FIELD
Energy(a) A #Beams Diameter p(b) B(kgauss) Coil Diameter
(3 (um) (cm) (Torr) (cm)
Present 400 1.05 2(¢) 60 > 1073 0.8(d) 5
o-1¢e) 10
Upgrade 1500 1.05(f)  3(8) 130 > 1076 0-10¢e) 26

0.53(f) 23

: (a) In a 3-4 nsec pulse; a 300 psec pulse duration is also available at reduced
. total energy

(b) Any gaseous species

(c) One-sided {llumination

(d) Permanent magnet

(e) Helmholtz and dipole coill configurations

(f) Narrow or broad bandwidth laser pulse

(g) One or two-sided fllumination

' Many diagnostics are available to measure the evolution of the debris-
plasma interaction; and others 4re currently being developed.(g) Diagnostics

include devices to measure: the incident and reflected laser energy and time-

history, the angular distributions of the resulting debris energy, velocity,




mass, and momentum. Magnetic probes measure the magnetic field distortions
during the debris/background plasma interactions and self-generated magnetic
field components as a function of position and time. Electric probes give
similar information about the electric field and plasma properties in low-
density plasma. Optical diagnostics such as shadowgraphy and interferometry
yield quantitative pictures of the plasma density structure at moderate-to~high
densities (© 1017 electrons per cm3) optical imaging with still-photography,
time-resolved framing photography, or streak photography also give qualitative
and quantitative information on density structure. Spectroscopy, from the
infrared to XUV, 1s uced to glve spatially and temporally resolved information
about the velocity, temperature, ionization state, density, émissivity, opacity,
etc. of the debris material, the photoionized background plasma, and the
interaction between them. Ion analyzers (under development)(lo) will allow
measurements of the debris and reflected ambient ion velocity and species
distributions along and across the magnetic fileld. Knowledge of the ion
properties 1is valuable in resolving many of the current questions about early-
time HANE instabilities. X-ray and XUV diagnostics allow diagnosis of plasma
properties above about 20 eV; pinhole or 1imaging photography gives 2-D
spatially-resolved 1images while electronic x-ray and UV detectors give
quantitative 1information about the initial debris plasma temperature, the UV
emigssion from the expanding debris-ambient plasma front, etc. Still other novel
techniques are used for specific information. Tracer-dot techniques, in which
small dots of a high-Z material are mﬁlanted in the target surface, have proved
valuable in providing debris flow visualizations and spatially resolved
quantitative spectroscopy.(u) Resonant and nonresonant laser scattering in the

disturbed plasma has been proposed to measure the density power spectrum.(lz)

The experiment can also provide a short-pulse x-ray flash for quantitative x-ray




radiography of the highly-accelerated 1013 cm/secz), high~density (> 0.1
solid) targets 1in the accelerating target regime.(13) Highly accelerated
targets, which can be purposefully structured, are being used to study the
hydrodynamic stability of material during device disassembly and the sensitivity

of plasma structure evolution to nonuniformities in the target.(13—l6)

IIT. Scaling of Laser-Experiment to HANE:

Scaling of HANE-parameters down to laboratory conditions is predicated on
several alternate sets of assumptions, depending upon the physics of interest.
No set of assumptions will simultaneously reproduce all aspects of a HANE event;
one should, therefore, consciously choose which physical conditions are to be
retained on the basis of their importance to the experiment. Longmire
formalized one scaling scheme by fixing the debris velocity in the laboratory
experiment to be equal to that of a real HANE and by preserving binary

collisions;(17)

this scaling preserves binary collision effects but not magnetic
field and plasma instability effects. It is a reasonable approach when details
of collisions are crucial. Also, it gives a feeling for how parameters scale
from a HANE down to the laboratory. Table II shows Longmire collisional scaling
relations as a function of the yield ratio Y = Elew between the HANE-weapon
and laboratory debris kinetic energies. As mentioned before, most of these
parameters are achievable in the experiment. But, if the focus of a particular
investigation 1s the role of streaming instabilities for '"collisionless" debris-
air momentum transfer,(la) other scaling relations are more appropriate.
Scalings which emphasize 1instability coupling have been discussed by

ouraelves(lz) and, more thoroughly, by Tsai, DeRaad and Lelevier (RDA),(19)

Smith and Huba (NRL),(ZO) Stellingwerf, Longmire and Alme (MRC),(ZI) and

Sperling (JAYCOR).(ZZ) These scalings generally relax the debris wvelocity and




material constraints but require stronger magnetic fields than strict Bz/nkT
scaling. The parameters of the target facility upgrade were, in fact, chosen to
allow clean studies of this type. Undoubtedly, other phenomena of interest,
such as MHD-EMP, highly-accelerated dense material, etc., require still other
scaling emphasis.

The targets can be irradiated in three modes: the exploding-~pusher mode;

the ablation mode; and the accelerating target mode. The exploding pusher

mode(23) occurs at high 1laser 1rradiance and yields very high-velocity ion
debris (but with a broad nonreproducible distribution). The ablation
node(24523) gecurs at lower laser irradiance (I < 1014 w/cp?) and yields a very

reproducible narrow (Av/v = & 0.1) ion velocity distribution with mean velocity
tunable between 107 and 8 x 107 cm/sec. This mode of operation is particularly
suitable for detailed HANE investigations due to its simplicity,
reproducibility, and cold ion distribution; this is the mode of preference for

(14,24,25) uses the

most studies. The third mode, the accelerating target mode,
ablating debris to accelerate a thin target to high-speed (up to 2 x 107 cm/sec)
while remaining near solid=-density (> 0.1 solid density) and cold (K 10 eV).
Each of these modes can be exploited for specific HANE studies.

The laser-plasma interaction can deposit energy densities comparable to
those of a real weapon and set up conditions close to (but not identical to)
actual HANE-events. The time and spatial scales are experimentally achievable
and well-diagnosed experiments can be done in a repeatable and repetitive manner
at modest cost (comparatively speaking). Therefore, with your help many issues
cri'cial to HANE phenomenology and structure evolution will soon be tested.

A brief description of our exploratory experiments in the low-pressure or

collisionless regime follows. We search for signs of a collisfonless mechanism

such as plasma instability that could couple the debris momentum to the ambient
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Table II. Collisional (Longmire(z)) scaling of selected
HANE parameters with the relative energy ratio Y.

Parameter Scaling Representative values for y=10"12
Velocity v = constant lO8 cm/sec

Mass (debris) my <Y 0.1-1 ugm

Distances R & Yl/2 ~1cm

Time v «yl/2 ~ 100 nsec

Background density gas p = Y-UZ 1013-1018 atoms/cc
*Magnetic field B= v 1/4a); v1/2(p) ~ 1 KG (a); ~ 1 MG (b)
*MII instability YT < Yl/l‘(a); const (b) ~1 (a); ~ 103 (b)

*The magnetic field does not scale uniquely._  The (a) scaling preserve- .t
magnetic field/plasma energy density ratio (B2/nk'1') which also preserve the
Alfven velocity comstant; in this scaling the number of instability growth ._:s
is compromised. An alternate assumption (b) is to keep Larmor radii cons :nt
with other distance scales; this requires unrealistically high magnetic fi.
Iv. Low-Pressure Ambient—-Plasma Regime

In our first experiments in the low-pressure (< 150 mTorr) regime, we
search for signs of beam-plasma instabilities. These instabilities are thought
to effect debris-air coupling in high-altitude events, such as in Starfish (400
km), in which collisions alone are insufficient to transfer momentum from the
device debris to the ionosphere. The experimental configuration and the
ambient and debris ion velocity distributions are sketched in Fig. 2. Of the
five streaming instabilities thought to be relevant to HANE (Lampe et al.)(ls)
we focus our attention on the magnetized ion-ion instability. The magnetized
ion-ion instability 1is an efficient momentum transfer mechanism with an
effective collision frequency of about one~tenth the lower hybrid frequency.

We are in a regime in which the debris ions are unmagnetized (cyclotren

radius >> equal mass radius), the ambient plasma is magnetized (electron and ion

cyclotron radii < the equal mass radius) and, most importantly, the debris




magnetic Mach number is high (VD > Vslfven’- The latter constraint is deemed
important to preserve the hydrodynamics of a HANE event.

The uncoupled debris ion distribution has high-velocity (up to 8 x 107
cm/sec) and a narrow spread (# 10%) as seen in the typical time~of-flight
detector signal of Fig. 3. The first blip is the t=0 marker (due to the x-ray
flash from the laser-target interaction; thils occurs on this plot at about
0.4). The mean velocity of the ions is 6 x 107 cm/sec 1n this case. The
debris~-ion distributions are well-behaved and reproducible in the absence of an
interaction. Moreover, they can be tuned up or down in velocity by changing the
laser irradiance.(zs) The relative velocity between debris and ambient ion
distributions exceeds the thermal spreads of the beams, thus satisfying the
criteria for streaming instabilit-.

when ambient gas 1is present, the debris distributions are altered. For
ambient pressures of 80 millitorr and up, the debris ion distributions reaching
the time-of-flight detector (about 22 cm away from the target) are attenuated
and slightly broadened, as in Fig. 4. These changes to the debris velocity
distributions are thought to be due to collisional proce ses, or at Ileast
magnetic field independent mechanisms, since they do not seem sensitive to the
presence or absence ofa magnetic field (at least not sensitive to fields below
one~-kilogauss).

To test the collisional properties of the debris ions in traversing tens-
of-centimeters of ambient plasma and gas before detection, we use the setup
shown in Fig. 5. Three time-of-flight charge collector detectors are placed at
10 em, 25 cm, and 55 cm distances from the target to detect ion distribution
changes occurring between them.

One question 1s whether we can rely upon the preservation of the shape of

the fon distribution in passing through the ambient media; if so we can detect
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the effects of an interaction occurring within a few centimeters of the target
much further away. The answer 1is seen iIn Fig. 6; at least through a mass-
pathlength of 5 x 1016 molecules/cc * cm (i.e., 150 mTorr N, with £ = 10 cm)
both the peak velocity and velocity spreads are not strongly affected.
Therefore, they can be used as good indicators of interactions close to the
target. .

Another related question is whether significant debris ion charge is being
lost due to charge exchange processes between the target and detector. Figure 7
shows that the answer is affirmative for 1low-velocity carbon debris (< 350
km/sec) for mass~pathlengths above about 1016 molecules/cmz, and for higher
velocity Al at somewhat higher pressures. Thus, the attenuation of debris ions
exhibited in Fig. 4 could be due to charge exchange or ion removal type
processes.

Nonetheless some energy, albeit a small amount, is transferred from the
debris to an expanding shell 1in the 100 mTorr regime; this is seen in the
framing camera pictures of visible 1light emission, Fig. 8. A fuzzy shell
expands with a speed of about 250 km/sec into a 100 mTorr N, background gas in
which an 800 G external field was applied. Measurements of the magnetic field
dynamics show that the ambient field is 1largely swept out of the region
traversed by the debris and is compressed ahead of the debris front, as
illustrated in Fig. 9. An extensive description of the magnetic field behavior

is to be found in a paper by Kacenjar et al.(z) elsewhere in this proceedings.

V. Collisionless Instability Regime
For what experimental parameters 1is the magnetized ion-ion instability
most likely to be observed? To answer this question we examine the instability

criteria outlined 1in Lampe et al.(ls) To satisfy the two most stringent




instability criteria, that of avoiding electromagnetic stabilization
(VD/VA = MA $ 2.5) and fitting at least one parallel wavelength in the system

size (All < Zan), we should go in the direction of:

o Increasing the magnetic field
o Decreasing the ambient density
o Decreasing the drift velocity

o Decreasing the atomic number of the ionms.

Smith and Huba quantitatively outlined expected regions of instability in
laser energy-ambient pressure space, as shown in Fig. 10. For example, Figure
11 shows that carbon debris interstreaming through an 800 G magnetized ambient
hydrogen plasma at a velocity of 400 km/sec should be MII unstable close to the
experimentally accessible circled region. The outlined regions of instability
assume full ionization of the hydrogen and therefore would move to the right in
Fig. 10 if the gas is partially ionized (as indeed it is).

To detect the presence of instability, an array of four charge time-of-
flight detectors 1is deployed perpendicular to the magnetic field direction but
at various angles from the target normal, as sketched in Fig. 12.

A clear difference between the debris ion distributions with and without
the magnetic field in place 1s seen in Fig., 13, Without a field present, as in
the ion distributions on the left side of Fig. 13, the debris distributions are
well-behaved and similar to those generated in a vacuum. In contrast, the
distributions in the presence of the magnetic field (on the right) are broadened
and have lower velocity (later-time) peaks which are like signatures of expected
beam-plasma instability. The pressure 1is low and collisions play little or no

role.

10
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We used hydrogen gas to have a low the ambient-plasma atomic number in
order to be more susceptible to instability, as indicated previously. To test
the conjecture that lower atomic number is more unstable we compared debris ion
distributions resulting from use of nitrogen (A=28) and hydrogen (A=1), as shown
in Fig. 1l4. The magnetic field dependent interaction that occurring in hydrogen
is not evident in nitrogen. This lends support to the notion that MII may be
occurring in the carbon~hydrogen combination but not in carbon-nitrogen under
our conditions.

Finally, sometimes iou signals are observed with components having higher
velocities than in the original debris distributions. This occurs (for example
in the circled regions of Fig. 15) at low incident laser energy in cases which
exhibit the other signs of magnetic field dependent interaction. We have very
few cases of this sort, and therefore the results are considered tentative.
But, these "fast ions" may be the result of a reflection or acceleration process

near the coupling region.

VI. Summary
The laser-target HANE-simulation experiment can examine physics questions
relevant to HANE early-time phenomena in three regimes: the collisionless (low-

pressure) regime, the collisional (high-pressure) regime, and the disassembly

(dense high—-acceleration) regime.

In the collisionless regime, the results of the first series of
experiments show magnetic field dependent interactions between the debris ions
and ambient plasma. In many ways these observations are similar to those

expected from the magnetized ion-ion instability. However, an extensive study

of collisionless plasma 1instability coupling awaits the wupgraded laser and

target facility.

11
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configuration (right).
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Temporal behavior of the change in magnetic field detected by a
magnetic loop probe located 3 cm from the target. The applied field

was 800 gauss. Note the field compression peak at 100 nsec and near

depletion of the applied field (magnetic bubble) for t > 120 nsec.
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region is bounded on the right by electromagnetic stabilization when
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in the debris plasma exceed that of the magnetic field, on the
bottom by requiring that the transit-time of an ambient ion passing 7
through the shell exceed one momentum transfer e-fold, and bounded
on the top by the practical requirement that the equal mass radius

fit inside the experiment. The top can also be limited by the

cyclotron radius of the debris ions at high field strengths.
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01CY ATTN M. SCHEIBE
01CY ATTN CONRAD L. LONGMIRE
01CY ATTN B. WHITE

MISSION RESEARCH CORP.
1720 RANDOLPH ROAD, S.E.
ALBUQUERQUE, NEW MEXICO 87106
OICY R. STELLINGWERF
OlCY M. ALME
01CY L. WRIGHT

MITRE CORPORATION, THE

P.0. BOX 208

BEDFORD, MA 01730
01CY ATTN JOHN MORGANSTERN
01CY ATTN G. HARDING
01CY ATTN C.E. CALLAHAN

MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISON BLVD
MCLEAN, vA 22101
O1CY ATTN W. HALL
OLCY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
12340 SANTA MONICA BLVD.
LOS ANGELES, CA 90025

01CY ATTN E.C. FIELD, JR.

PENNSYLVANIA STATE UNIVERSITY
TONOSPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802

(NO CLASS TO THIS ADDRESS)

01CY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.
4 ARROW DRIVE
WOBURN, MA 01801
01CY ATTN IRVING L. KOFSKY

PRYSICAL DYNAMICS, INC.
P.0. BOX 3027
BELLEVUE, WA 98009

0lCY ATTN Z.J. FRENOUW

PHYSICAL DYNAMICS, INC.

P.0. BOX 10367

OAKLAND, CA 94610
ATTN A. THOMSON

R & D ASSOCIATES

P.0. BOX 9695

MARINA DEL REY, CA 90291
0lCY ATTN rORREST GILMORE
01CY ATTN WILLIAM B. WRIGHT, JR.
OlCY ATTN ROBERT F. LELEVIER
01CY ATTN WILLIAM J. KARZAS
Ol1CY ATTN H. ORY
O1CY ATTIN C. MACDONALD
01CY ATTN R. TURCO
01CY ATTN L. DeRAND
01CY ATTN W. TSAL

RAND CORPORATION, THE

1700 MAIN STREET

SANTA MONICA, CA 90406
01CY ATTN CULLEN CRAIN
01CY ATTN ED BEDROZIAN

RAYTHEON CO.
528 BOSTON POST ROAD
SUDBURY, MA 01776

01CY ATTN BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE
330 WEST 42ad STREET
NEW YORK, NY 10036

01CY ATTN VINCE TRAPANI

i 35

B e e TR R - T LR ]




SCISNCE APPLICATIONS, INC. TRW DEFENSE & 3PACZ SYS CROUP

1150° PROSPECT PLAZA ONE SPACI 2ARK

LA JOLLA, CA 92037 REDONDO 3EACH, €A 90273
01CY ATTIN LEWIS M. LINSON 01CY ATTY R. K. PLEBUCH
Ol1CY ATTN DANIEL A. HAMLIN 01CY ATTN S. ALTSCHULZR
01CY ATTY E. FRIEMaAN 01CY ATTN D. DEE
01CY ATTN E.A. STRAKER Q1CY ATTN D/ STCCKJELL

OLCY ATTN CURTIS A. SMITH
Ol1CY ATTN JACK MCDOUGALL

VISIDYNE

SNTF/1575

SCIENCZ APPLICATIONS, INC SOUTH BEDFCRD STREZT

1710 GOODRIDGE DR.

MCLEAN, VA 22102 Q1CcY
ATTN: J. COCXAYNE aicy
01cY

SRI INTERNATIONAL

333 RAVENSWOOD AVENUE

MENLO PARY, CA 94025
Ol1CY ATTN DONALD NEILSON
01CY ATTN ALaN BURNS
01CY ATTN G. SMITH
O1CY ATTN R. TSUNODA
01CY ATTY DAVID A. JOHNSON
01CY ATTN WALTER G. CHESHUT
01CY ATTN CHARLES L. RINO
91CY  ATTYN WALTER JALE
01CY ATTN J. VICKREY
O1C7 ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
0ICY ATTN R. LIVINGSTON
01CY ATTN V. GONZALES
01CY ATTN D. MCDANIEL

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730

01CY ATTN W.P. BOQUIST

TOYON RESEARCH CO.

P.0. 3ox 6890

SANTA BARBARA, CA 9311l
O1CY  ATTY JOHM ISE, JR.
01CY ATTN JOEL GARBARIND

3URLINGTON, MASS 01803

v W. REIDY
ATTN J. CARPENTER

ATTH J. HUMPHREY







